Pythagorean Triples Formulas

Julianne A. Runco
Kent State University
Math 67098: Research
Dr. Evgenia Soprunova

Abstract

There are multiple formulas to help provide three integers which satisfy the Pythagorean Theorem, $a^{2}+b^{2}=c^{2}$. The simplest formula of $a=x^{2}-y^{2}, b=2 x y$, and $c=x^{2}+y^{2}$ is easy to use but does not provide all triples that satisfy the Pythagorean Theorem. Fortunately, there are other formulas which can be used to find all Pythagorean triples. The Height-Excess Enumeration Theorem provides a formula for calculating all Pythagorean triples, while WadeWade and the Fibonacci sequence provide recursive formulas for calculating Pythagorean triples. This paper will concentrate on proving the Height-Excess Enumeration Theorem and provide the formulas for the two recursive formulas.

The Height-Excess Enumeration Theorem provides a formula for calculating a Pythagorean triple based on two chosen values called h and k. The formula is derived from breaking side a of the right triangle into two parts: the height and the excess. The height of side a is calculated by subtracting b from c. Thus, $h=c-b$. The excess of side a is the length leftover from subtracting h from a. The excess of the right triangle is where the value of k comes into play. The value d is called the increment. Figure 1 gives a geometric representation of the right triangle used to create the theorem.

Figure 1. Right triangle broken into a height and excess.

Height-Excess Enumeration Theorem. To a positive integer h, written as $p q^{2}$ with p squarefree and q positive, associate the number $d=\left\{\begin{array}{ll}2 p q & \text { if } p \text { is odd } \\ p q & \text { if } p \text { is even }\end{array}\right.$. As one takes all pairs (h, k) of positive integers, the formula $P(h, k)=\left(h+d k, d k+\frac{(d k)^{2}}{2 h}, h+d k+\frac{(d k)^{2}}{2 h}\right)$ produces each Pythagorean triple exactly once.

Let us start with checking the formula to see it supports the Pythagorean Theorem. Squaring each part of the formula gives $a^{2}=(h+d k)^{2}=h^{2}+2 h d k+d^{2} k^{2}$,
$b^{2}=\left(d k+\frac{(d k)^{2}}{2 h}\right)^{2}=d^{2} k^{2}+\frac{d^{3} k^{3}}{h}+\frac{d^{4} k^{4}}{4 h^{2}}$, and $c^{2}=\left(h+d k+\frac{(d k)^{2}}{2 h}\right)^{2}=h^{2}+d^{2} k^{2}+$ $+\frac{d^{4} k^{4}}{4 h^{2}}+2 h d k+d^{2} k^{2}++\frac{d^{3} k^{3}}{h}$. Each term in c^{2} appears in either a^{2} or b^{2} with no excess or missing terms. Thus, the formula holds true for the Pythagorean Theorem.

To prove the theorem, the following lemma is required to establish properties of the increment, d.

Lemma. Let h be a positive integer with associated increment d. Then $2 h \mid d^{2}$. If D is any positive integer for which $2 h \mid D^{2}$, then $d \mid D$.

Proof:

- \quad Prove $2 h \mid d^{2}$. Case 1-Suppose p is even. By definition $d=p q$. Then $d^{2}=p^{2} q^{2}=$ $2 p q^{2}\left(\frac{p}{2}\right)=2 h\left(\frac{p}{2}\right)$. Thus $2 h \mid d^{2}$ because $\frac{p}{2}$ is an integer since p is even. Case 2 -Suppose p is odd. By definition $d=2 p q$. Then $d^{2}=4 p^{2} q^{2}=2 p q^{2}(2 p)=2 h(2 p)$. Thus $2 h \mid d^{2}$ because $2 p$ is an integer since p is an integer. Therefore, $2 h \mid d^{2}$.
- Prove if $2 h \mid D^{2}$, then $d \mid D$. Suppose $2 h \mid D^{2}$. By The Fundamental Theorem of Arithmetic let $D=d_{1}^{r_{1}} \cdots d_{\ell}^{r_{\ell}}, p=p_{1} \cdots p_{m}$, and $q^{2}=q_{1}^{2 t_{1}} \cdots q_{n}^{2 t_{n}}$, where $d_{\ell}^{r_{\ell}}, p_{m}$, and $q_{n}^{2 t_{n}}$ are distinct prime factors respectively. By the definition of divide $D^{2}=2 h k$, for some integer k. Then $d_{1}^{2 r_{1}} \cdots d_{\ell}^{2 r_{\ell}}=2 p_{1} \cdots p_{m} \cdot q_{1}^{2 t_{1}} \cdots q_{n}^{2 t_{n}} \cdot k$. Each q_{i} must equal a d_{j} such that $2 t_{i} \leq 2 r_{j}$, then $t_{i} \leq$ r_{j}. Thus, $q \mid D$ and $D=q k_{1}$ for some integer k_{1}. Then $D^{2}=2 p q^{2} k$ and $D^{2}=q^{2} k_{1}^{2}$, which gives $2 p q^{2} k=q^{2} k_{1}^{2}$. Then $2 p k=k_{1}^{2}$ and k_{1}^{2} is even. Let $k_{1}=s_{1}^{u_{1}} \cdots s_{w}^{u_{w}}$ where $s_{w}^{u_{w}}$ are distinct prime factors. Then $2 p_{1} \cdots p_{m} k=s_{1}^{2 u_{1}} \cdots s_{w}^{2 u_{w}}$ and each p_{i} must equal one of the s_{j}. Thus $p \mid k_{1}$
and $k_{1}=p k_{2}$ for some integer k_{2}. Case 1 - Suppose p is even, then $d=p q$. By substitution $D=$ $q k_{1}=q \cdot p k_{2}=p q \cdot k_{2}=d k_{2}$. Thus, $d \mid D$. Case 2-Suppose p is odd, then $d=2 p q$. Since k_{1}^{2} is even, then k_{1} is even. Thus, $2 \mid k_{1}$ which gives $2 \mid k_{1}^{2}$ and 2 is one of the s_{j}. Then $2 p \mid k_{1}$ and $k_{1}=$ $2 p k_{2}$ for some integer k_{2}. By substitution $D=q k_{1}=q \cdot 2 p k_{2}=2 p q \cdot k_{2}=d k_{2}$. Thus, $d \mid D$.

With this lemma we can prove the Height-Excess Enumeration Theorem.
Proof: Let (a, b, c) be a Pythagorean triple, then $a^{2}+b^{2}=c^{2}$. Let $h=c-b$ and $e=$ $a-h=a-(c-b)=a+b-c$. This gives three equations which can be used to solve for a, b, and c in terms of h and e. First $h+e=(c-b)+(a+b-c)$, which simplifies to $a=h+$ e. Then $a^{2}=c^{2}-b^{2}$ gives $(h+e)^{2}=(c-b)(c+b)$, which gives $h^{2}+2 h e+e^{2}=h(c+b)$ through multiplication and substitution. Thus $\left\{\begin{array}{c}c+b=h+2 e+\frac{e^{2}}{h} \text {. By elimination method } \\ c-b=h\end{array}\right.$ $2 c=2 h+2 e+\frac{e^{2}}{h}$, which simplifies to $c=h+e+\frac{e^{2}}{2 h}$. By substitution $e=(h+e)+b-$ $\left(2 h+2 e+\frac{e^{2}}{h}\right)$. Then solving for b gives $b=e+\frac{e^{2}}{2 h}$. Start with substituting the values for a, b, and c into $2(c-a)(c-b)$. Then $2(c-a)(c-b)=2\left(h+e+\frac{e^{2}}{2 h}-(h+e)\right)\left(h+e+\frac{e^{2}}{2 h}-\right.$ $\left.\left(e+\frac{e^{2}}{2 h}\right)\right)=2 \cdot \frac{e^{2}}{2 h} \cdot h=e^{2}$. Thus $e^{2}=2(c-a) \cdot h=2 h \cdot(c-a)$. Since a and c are integers, $c-a$ is an integer and $2 h \mid e^{2}$. Then $d \mid e$ by the previous lemma, which gives $e=d k$ for some integer k. Therefore $(a, b, c)=P(h, k)=\left(h+d k, d k+\frac{(d k)^{2}}{2 h}, h+d k+\frac{(d k)^{2}}{2 h}\right)$.

This theorem also has an extension which gives the conditions for a primitive Pythagorean triple and a Pythagorean triangle. A primitive Pythagorean triple is a triple that cannot be reduced to a smaller triple, thus $\operatorname{GCD}(a, b, c)$ is equal to 1 . A Pythagorean triangle is a triple in which $a<b$.

Theorem. The primitive Pythagorean triples occur exactly when $\operatorname{GCD}(h, k)=1$ and either $h=$ q^{2} with q odd, or $h=2 q^{2}$. The Pythagorean triangles occur exactly when $k>\frac{h}{d} \sqrt{2}$.

Proof:

- primitive Pythagorean triples.

Case 1-Let (a, b, c) be a primitive triple. Suppose r is a prime dividing $c-a$ and $c-b$. Then r divides $(c-a)^{2}+(c-b)^{2}=c^{2}-2 a c+a^{2}+c^{2}-2 b c+b^{2}=2 c^{2}-2 a c-2 b c+$ $c^{2}=3 c^{2}-2 a c-2 b c=c(3 c-2 a-2 b)$. Thus either $r \mid c$ or $r \mid 3 c-2 a-2 b$. If $r \mid c$, then contradiction since (a, b, c) is a primitive triple. If $r \mid 3 c-2 a-2 b$, then $r \mid c$ since $3 c-2 a-$ $2 b=2 c-2 a+c-2 b+c-c=2(c-a)+2 c-2 b+c=2(c-a)+2(c-b)+c$. This gives a contradiction again and $c-a$ and $c-b$ are relatively prime. By substitution $c-a=$ $h+d k+\frac{(d k)^{2}}{2 h}-(h+d k)=\frac{(d k)^{2}}{2 h}$ and $c-b=h+d k+\frac{(d k)^{2}}{2 h}-\left(d k+\frac{(d k)^{2}}{2 h}\right)=h$.

Case a-Suppose p is odd, then $d=2 p q$. Thus $c-a=\frac{(d k)^{2}}{2 h}=\frac{(2 p q k)^{2}}{2 p q^{2}}=2 p k^{2}$ and $c-$ $b=h=p q^{2}$. Since $\operatorname{GCD}(c-a, c-b)=1$, then $p=1, h=q^{2}$, and $\operatorname{GCD}\left(2 k^{2}, q^{2}\right)=1$. Since $2 k^{2}$ is even, q^{2} must be odd to be relatively prime. Thus q is odd and $\operatorname{GCD}(h, k)=1$.

Case b-Suppose p is even, then $d=p q$. Thus $c-a=\frac{(d k)^{2}}{2 h}=\frac{(p q k)^{2}}{2 p q^{2}}=\frac{p}{2} k^{2}$ and $c-b=$ $h=p q^{2}$. Since $\operatorname{GCD}(c-a, c-b)=1$, then $p=2, h=2 q^{2}$, and $\operatorname{GCD}\left(k^{2}, 2 q^{2}\right)=1$. Thus $\operatorname{GCD}(h, k)=1$.

Case 2.A-Let $\operatorname{GCD}(h . k)=1$ and $h=q^{2}$ with q odd. Thus $p=1$ and $d=2 q$. Then $a=$ $h+d k=q^{2}+2 k q=q(q+2 k)$ and $b=d k+\frac{(d k)^{2}}{2 h}=2 k q+\frac{(2 k q)^{2}}{2 q^{2}}=2 k q+2 k^{2}=$ $2 k(q+k)$. Let r be a prime sch that $r \mid a$ and $r \mid b$. Since q and $q+2 k$ are odd, then a is odd and r must be odd. Then $r \mid q(q+2 k)$ and $r \mid 2 k(q+k)$.

Case a-Suppose $r \mid q$ and $r \mid 2 k$. Since r is odd, $r \mid k$. Thus $r \mid h$ and $r \mid k$, which is a contradiction.

Case b- Suppose $r \mid q$ and $r \mid q+k$. Then $r \mid k$. Thus $r \mid h$ and $r \mid k$, which is a contradiction.
Case c-Suppose $r \mid q+2 k$ and $r \mid 2 k$. Then $r \mid q$ and $r \mid k$ since r is odd and cannot divide 2 . Thus $r \mid h$ and $r \mid k$, which is a contradiction.

Case d- Suppose $r \mid q+2 k$ and $r \mid q+k$. Then $r \mid q$ and $r \mid k$ since r is odd and cannot divide 2. Thus $r \mid h$ and $r \mid k$, which is a contradiction. Therefore (a, b, c) is primitive.

Case 2.B- Let $\operatorname{GCD}(h . k)=1$ and $h=2 q^{2}$. Then $p=2$ and $d=2 q$. Thus $a=h+$ $d k=2 q^{2}+2 k q=2 q(q+k)$ and $b=d k+\frac{(d k)^{2}}{2 h}=2 k q+\frac{(2 k q)^{2}}{4 q^{2}}=2 k q+k^{2}=k(2 q+k)$. Let r be a prime such that $r \mid a$ and $r \mid b$. Since h is even, k is odd. Then $2 q+k$ is odd which lead to b is odd. Thus, r is odd and cannot equal 2 . Then similarly to the cases above $r \mid h$ and $r \mid k$, which is a contradiction. Therefore (a, b, c) is primitive

- Pythagorean triangles.

Let $a<b$. Then $h+d k<d k+\frac{(d k)^{2}}{2 h}$

$$
\begin{aligned}
& \Rightarrow h<\frac{(d k)^{2}}{2 h} \\
& \Rightarrow 2 h^{2}<d^{2} k^{2} \\
& \Rightarrow k^{2}>\frac{2 h^{2}}{d^{2}} \\
& \Rightarrow k>\frac{h}{d} \sqrt{2}
\end{aligned}
$$

The last two formulas give a recursive method of calculating Pythagorean triples. The first formula was developed by P.W. Wade and W.R. Wade. Their recursion is based on the Height-Excess Enumeration formula and uses the same values of h and $k ;\left(a_{k+1}, b_{k+1}, c_{k+1}\right)=$
$\left(a_{k}+d, \frac{d}{h} a_{k}+b_{k}+\frac{d^{2}}{2 h}, \frac{d}{h} a_{k}+c_{k}+\frac{d^{2}}{2 h}\right)$. The second recursion formula was given by
Horadam and starts with a generalized Fibonacci sequence; let r and s be positive integers and $H_{1}=r, H_{2}=s$, and $H_{n}=H_{n-1}+H_{n-2}$. Then the triples $\left(2 H_{n+1}^{2}+2 H_{n} H_{n+1}, H_{n}^{2}+2 H_{n} H_{n+1}\right.$, $\left.H_{n}^{2}+2 H_{n} H_{n+1}+2 H_{n+1}^{2}\right)$ are Pythagorean triples with a even.

References

Horadam, A. F. (1961). Fibonacci Number Triples. The American Mathematical Monthly, 68(8), 751-753. https://doi.org/10.2307/2311978

Horadam, A. F. (1961). A Generalized Fibonacci Sequence. The American Mathematical Monthly, 68(5), 455-459. https://doi.org/10.2307/2311099

McCullough, D., \& Wade, E. (2003). Recursive Enumeration of Pythagorean Triples. The College Mathematics Journal, 34(2), 107-111. https://doi.org/10.2307/3595782

